PROTAC概述
PROTAC (Proteolysis Targeting Chimeras,全称蛋白降解靶向嵌合体,即利用泛素-蛋白酶体系统诱导靶向蛋白降解。近年来,PROTAC技术日臻成熟,未来有望突破不可成药的难题,并克服由于靶标突变或过表达带来的耐药性问题。自从人类基因组被解读以来,研究人员便试图靶向成千上万导致疾病的蛋白。但目前仅有20%的蛋白能用小分子或大分子药物调控,高达80%的蛋白无法被现有药物调控。此外,由于小分子和抗体药物均需要持续占据靶蛋白活性位点以阻断其功能,因此需要达到足够高的浓度方可发挥作用,这种作用机制不可避免带来耐药性或不可成药等问题。PROTAC技术是药物研发的新兴方向,与传统药物阻断蛋白的模式不同,PROTAC通过两种配体与靶蛋白与泛素E3连接酶同时结合,形成稳定的靶蛋白-PROTAC-E3连接酶三元复合物,诱导泛素化并由蛋白酶体降解,有望突破不可成药的蛋白靶标。
PROTAC的优势
(1)作用范围更广、活性更高、可靶向“不可成药”靶点
传统的小分子和抗体等都是通过“占据驱动”的作用模式抑制靶蛋白的功能发挥治疗疾病的作用,这种作用模式需要抑制剂或单抗具备较高的浓度才能够占据靶点的活性位点,阻断下游信号通路的转导。而PROTAC是“事件驱动”,不是影响蛋白的功能,而是介导致病靶蛋白被降解。只要PROTAC介导三元复合物的形成并给靶蛋白打上泛素化的标签,理论上是可以循环反复使用的,因此催化剂量即可发挥作用。而且PROTAC对于没有活性位点的蛋白,如支架蛋白等,只要能够产生结合作用就可以诱导相关蛋白被降解,可以大大提高靶点的范围。
(2)提高选择性、活性和安全性
与传统小分子抑制剂相比,PROTAC在某些靶点上可实现小分子难以实现的选择性。例如,多靶点酪氨酸激酶抑制剂Foretinib可以结合130多种激酶,Crews等人将其作为结合靶蛋白的配体,分别连接E3连接酶VHL(von Hippel-Lindau)和CRBN(cereblon)的配体得到相应的PROTAC,结果显示连接VHL和CRBN的PROTAC只能分别降解36和62种蛋白,而只有12种蛋白才能被这两种PROTAC降解。另外一项Gray课题组的研究也证明了PROTAC可以实现靶点的选择性。2,4-二氨基嘧啶骨架是激酶抑制剂的常见骨架,EGFR、ALK、CDK、Jak等激酶的抑制剂都有用到其作为母核。但是该骨架形成的药物分子大多都比较“脏”,也就是靶点选择性比较差,经常对其他很多激酶都有很强的抑制活性,开发过程中off target的脱靶效应常常成为毒副作用的主要来源,影响新药开发的成功率。Gray课题组基于该骨架合成的PROTAC虽然能够结合190多种激酶,但是细胞实验中只能降解12和22种激酶,大大提高了靶点的选择性。由此可见,合理的药物设计加之反复迭代优化,选择性更高、活性更好、安全性更佳的PROTAC分子很有可能被发现。
(3)克服药物的耐药性
PROTAC既可有效靶向目标蛋白,又可以将其降解清除。与传统小分子药物不同,PROTAC无需与目标蛋白长时间和高强度的结合,便可捕获蛋白并将其降解,因此有望突破传统难以成药的靶点并克服耐药性问题。
(4)药物剂量较低
PROTAC的反应过程类似催化反应,药物可重复利用,裂解目标蛋白,并不需要等摩尔量的药物,药物的剂量有望降低。
PROTAC的设计
(1)Linker的选择
根据Linker构成的不同,可分为烷基链和PEG链,也有文献使用刚性更强的炔基双哌啶环、含氮原子的螺环或桥环等作为Linker,以限制PROTAC分子的柔性和自由度。已有的文献报道表明,Linker的长短也会影响PROTAC的降解活性,常用的Linker长度一般在4~15个碳原子(或杂原子)。根据作用靶点的不同,Linker的长短对降解活性的影响也不同。此外,Click chemistry(点击化学)由于反应条件较温和、效率较高,常常被应用到PROTAC分子的Linker当中,用于连接两端的分子。
(2)结构
小分子PROTAC一般由三部分组成:目标蛋白(Protein of interest, POI)配体、E3泛素连接酶配体及连接体Linker。当PROTAC分子进入细胞后,其结构中的目标蛋白配体可特异性地与相应的靶蛋白结合,而另一端可以募集E3连接酶从而形成POI-PROTAC-E3 ligase三元复合物,其中E3连接酶可介导泛素结合酶E2对POI泛素化。三元复合物解离后,被泛素“标记”的POI被蛋白酶体识别并降解从而选择性降低靶蛋白的水平。
若涉及版权问题,敬请作者联系我删除!